

§ 16.3 Conservative Vector Fields -

Recall: Line Integral (all equivalent)

$$\int_C \vec{F} \cdot \vec{T} \, ds = \int_a^b \vec{F} \cdot \vec{v} \, dt = \int_C \vec{F} \cdot d\vec{r} = \int_C M \, dx + N \, dy + P \, dz$$

Tells Meaning

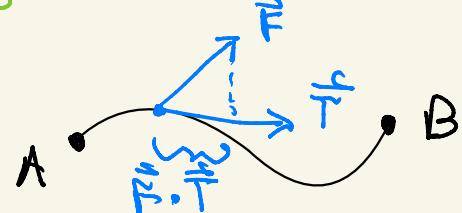
- Work Done

- Circulation

- "Amt of \vec{F} pointing tangent to C "

tells how
to compute it

"View a parameterization
 $\vec{r}(t)$ as a coordinate
system on C "



We proved:

Thm: If $\vec{F} = \nabla f$, then $\int_C \vec{F} \cdot \vec{T} \, ds = f(B) - f(A)$

Said Differently: We can evaluate $\int_C \vec{F} \cdot \vec{T} \, ds$
if we can find an "anti-derivative" f
such that $\nabla f = \vec{F}$. (f is called a "potential" -
If so, we say \vec{F} conservative)

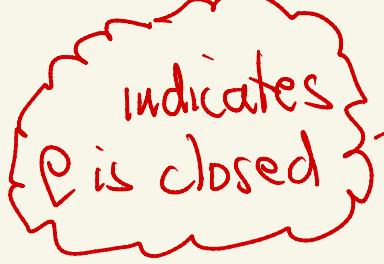
I.e., then: $\int_C \vec{F} \cdot \vec{T} \, ds = \int_C \nabla f \cdot \vec{T} \, ds = f(B) - f(A)$

Q1: Given \vec{F} , how do we know f exists st $\nabla f = \vec{F}$?

Q2: Given \vec{F} has a potential, how do we find it?

Note: If \mathbb{F} is conservative, so there is
an f such that $\nabla f = \mathbb{F}$, then

(2)



$$\oint_C \mathbb{F} \cdot \vec{T} ds = 0 \quad (f(B) - f(A) = 0)$$

 for every closed curve C .

Turns out it goes the other way:

Theorem: If $\oint_C \mathbb{F} \cdot \vec{T} ds = 0$ for every closed
curve C , then \mathbb{F} is conservative.

"Proof:" Assume $\oint_C \mathbb{F} \cdot \vec{T} ds = 0$ for every closed C . Then

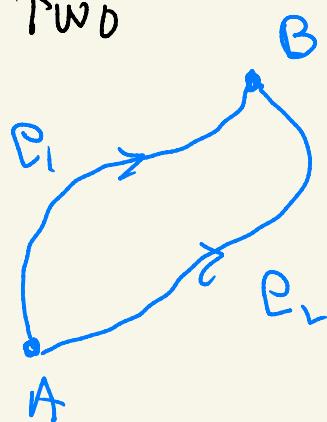
(1) $\oint_{C_1} \mathbb{F} \cdot \vec{T} ds = \oint_{C_2} \mathbb{F} \cdot \vec{T} ds$ for any two

curves taking $A \rightarrow B$

i.e. $C_2 - C_1$ is closed so

$$0 = \int_{C_2 - C_1} \mathbb{F} \cdot \vec{T} ds = \int_{C_1} \mathbb{F} \cdot \vec{T} ds - \int_{C_2} \mathbb{F} \cdot \vec{T} ds$$

$$\Rightarrow \int_{C_1} \mathbb{F} \cdot \vec{T} ds = \int_{C_2} \mathbb{F} \cdot \vec{T} ds$$



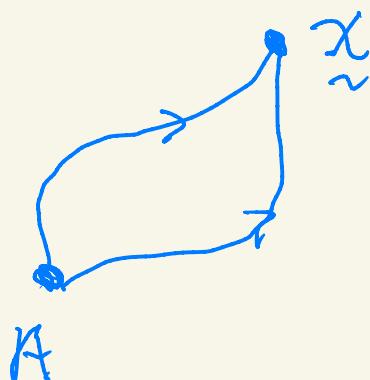
(2) Define: $f(\tilde{x}) = \int_A^{\tilde{x}} \tilde{F} \cdot \tilde{T} ds$ (3)

This is well defined because the result is the same for every path $A \rightarrow \tilde{x}$

(So take any curve from $A \rightarrow \tilde{x} = (x, y, z)$)

(3) Turns out: $\nabla f = \tilde{F}$.

(We skip this part of proof)



Problem: This is important for theoretical reason's (Complex Variable - how to put $i = \tilde{F}_1$ into Calculus - Math 185A)

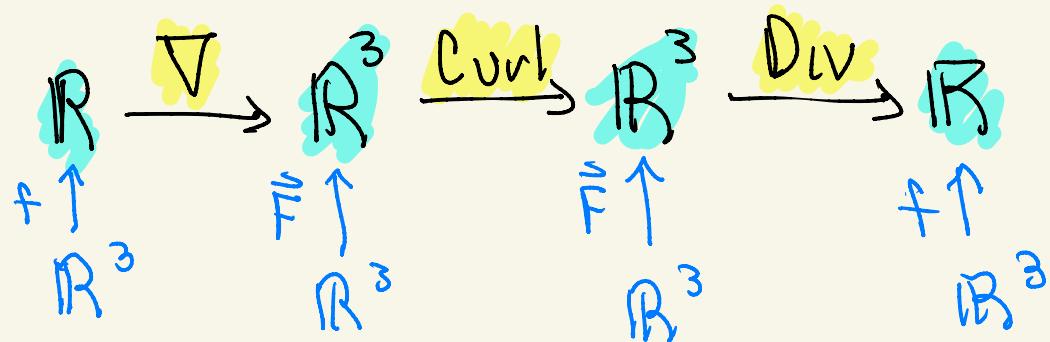
... But doesn't help us answer the question

Q1: Given \tilde{F} , how do we know it's conservative?

We now address Q1

Q1: Given $\vec{F} = (M(x), N(x), P(x))$, how do we determine whether or not \vec{F} is conservative? There is an extraordinary answer \downarrow

To get the answer, consider following diagram:



The diagram describes the functions which are the inputs and outputs of operators ∇ , curl , div

Eg:

$$\begin{array}{ccc}
 \text{Inputs } f: \mathbb{R}^3 \rightarrow \mathbb{R} & \xrightarrow{\nabla} & \text{Outputs } \nabla f = \vec{F}: \mathbb{R}^3 \rightarrow \mathbb{R}^3
 \end{array}$$

The gradient inputs $f: \mathbb{R}^3 \rightarrow \mathbb{R}$

The gradient outputs vector field $\nabla f = \vec{F}: \mathbb{R}^3 \rightarrow \mathbb{R}^3$

Fact: (Not hard to check, but profoundly interesting)

Thm: If you do two in a row you get zero

$$\text{i.e. } \text{curl}(\nabla f) = 0 \text{ and } \text{div}(\text{curl } \vec{F}) = 0$$

all f all \vec{F}

Example: Show $\operatorname{Curl}(\nabla f) = 0$ for all f

5

$$\text{Sofn} = \text{Curf}(\nabla f) = \text{Curf}(f_x, f_y, f_z)$$

二〇

✓

Example Show $\operatorname{Div}(\operatorname{Curl} \vec{F}) = 0$

Y F

(Exam
Problem?)

So back to our question:

Q1: Given \vec{F} , how do we know its conservative, i.e., how do we know $\exists f$ st $\nabla f = \vec{F}$?

We know: If $\nabla f = \vec{F}$, then $\text{Curl } \vec{F} = \text{Curl } \nabla f = 0$.

Does it go the other way?

I.e. is it true that if $\text{Curl } \vec{F} = 0$, then $\vec{F} = \nabla f$ for some f ?

If so we have a quick way of determining whether \vec{F} is conservative - just take its curl !

Ans: Yes, but only so long as \vec{F} has **No Singularities**.

The precise theorem is -

Theorem: If $\text{Curl } \vec{F} = 0$ and \vec{F} is singularity free in a simply connected Domain $D \subseteq \mathbb{R}^3$, then $\oint_E \vec{F} \cdot \vec{T} ds = 0$ for every closed E $\vec{F} = \nabla f$, $f(x) = \int_A^x \vec{F} \cdot \vec{T} ds$

We need to define simply connected Domain D

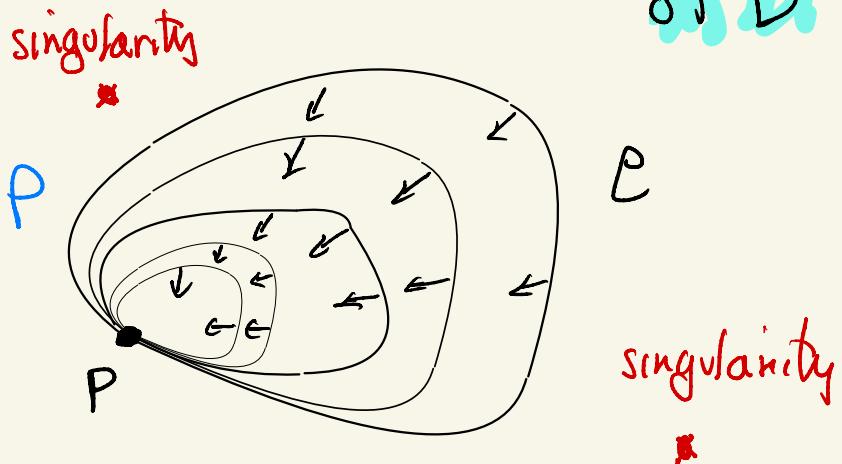
A simply connected domain is one that has

✓

NO HOLES

Defn: $D \subseteq \mathbb{R}^3$ is simply connected if every closed curve in D can be continuously contracted to a point on ∂D without passing out of D

Picture: Continuously contracting ∂D to point P



Famous Example:

$$\vec{F} = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \right)$$

$$\vec{x} = (x, y)$$

\vec{F} is defined for $\vec{x} = (x, y) \neq (0, 0)$.

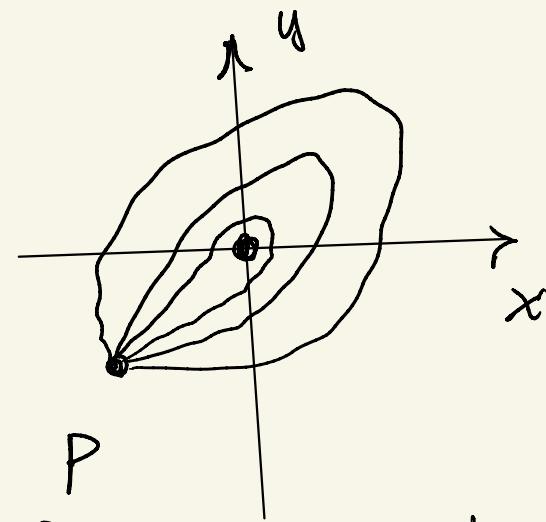
If $\text{curl } \vec{F} = 0$ $\vec{x} \neq 0$ we cannot apply the theorem because $D = \{ \vec{x} \in \mathbb{R}^2 : \vec{x} \neq 0 \}$ is not simply connected...

Because $\vec{F} = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}, 0 \right)$ not defined $x=y=0$,
... so D not simply connected

Picture: $\vec{F} = \left(-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2} \right)$ $\vec{x} \neq \vec{0}$

8

$D = \{ \vec{x} \in \mathbb{R}^2 : \vec{x} \neq \vec{0} \}$



Not simply connected

because there are P

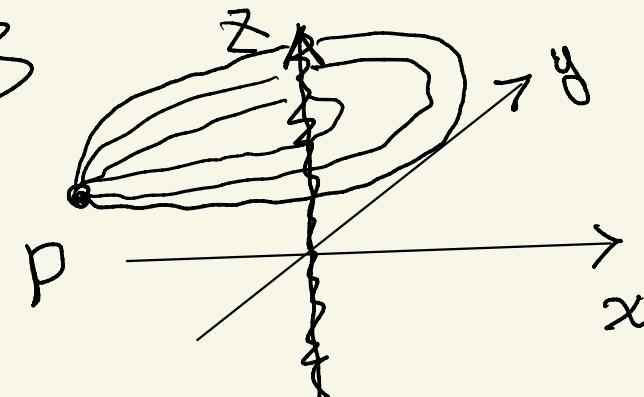
closed curves in D which cannot be contracted to a point without

passing thru $\vec{x} = (0,0)$ and hence P

"out of D "

Similarly: $\vec{F} = \left(-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}, 0 \right)$

$D = \{ \vec{x} \in \mathbb{R}^3 : x \neq 0, y \neq 0 \}$



(9)

Check: $\text{curl } \mathbf{F} = 0$ $\mathbf{F} = \left(-\frac{y}{r^2}, \frac{x}{r^2} \right)$

$$\text{curl } \mathbf{F} = \begin{Bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M_x & M_y & 0 \end{Bmatrix} = \frac{\partial}{\partial z} \cdot 0 - \frac{\partial}{\partial z} \cdot 0 + (N_x - M_y) =$$

$$N_x = \frac{\partial}{\partial x} \frac{x}{r^2} = \frac{1}{r^2} - 2 \frac{x}{r^3} \cancel{x}$$

$$M_y = -\frac{\partial}{\partial y} \frac{y}{r^2} = -\frac{1}{r^2} + 2 \frac{y}{r^3} \cancel{y}$$

$$N_x - M_y = \left(\frac{1}{r^2} + \frac{1}{r^2} \right) - 2 \frac{1}{r^4} (x^2 + y^2)$$

$\underbrace{\frac{2}{r^2}}$ $\underbrace{- \frac{2}{r^2}}$

$$= 0$$

(10)

Thus: $\text{Curl } \mathbf{F} = 0$ in D . We show $\int_C \mathbf{F} \cdot \mathbf{T} \, ds \neq 0$ on all

closed curves. I.e., choose

C = unit circle

$$\mathbf{r}(t) = (\cos t, \sin t)$$

$$0 \leq t \leq 2\pi$$

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_0^{2\pi} \mathbf{F} \cdot \mathbf{v} \, dt$$

$r=1$ on unit circle

$$= \int_0^{2\pi} \left(\frac{-y}{r^2}, \frac{x}{r^2} \right) \cdot (-\sin t, \cos t) \, dt$$

$$= \int_0^{2\pi} (-\sin t, \cos t) \cdot (-\sin t, \cos t) \, dt$$

$$= \int_0^{2\pi} \sin^2 t + \cos^2 t \, dt = 2\pi$$

$\neq 0$

Conclusion: $\vec{F} = \left(\frac{-y}{r^2}, \frac{x}{r^2}, 0 \right)$ (1)

is **Curl free** ($\text{Curl } \vec{F} = 0$) on its domain $x \neq 0, y \neq 0$, but it can't be conservative

because $\oint_C \vec{F} \cdot \vec{T} \, ds \neq 0$ for some closed C .

Problem: To conclude $\text{Curl } \vec{F} = 0$ implies $\vec{F} = \nabla f$, we must have $\text{Curl } \vec{F} = 0$ on a simply connected domain - the domain being all the values of (x, y, z) where $\text{Curl } \vec{F}$ can be computed, and $\text{Curl } \vec{F}(x, y, z) = 0$.

Example: Consider Newton's

Force Field

$$\mathbf{F} = -\frac{\mathbf{r}}{r^3}$$

12

We know its conservation:

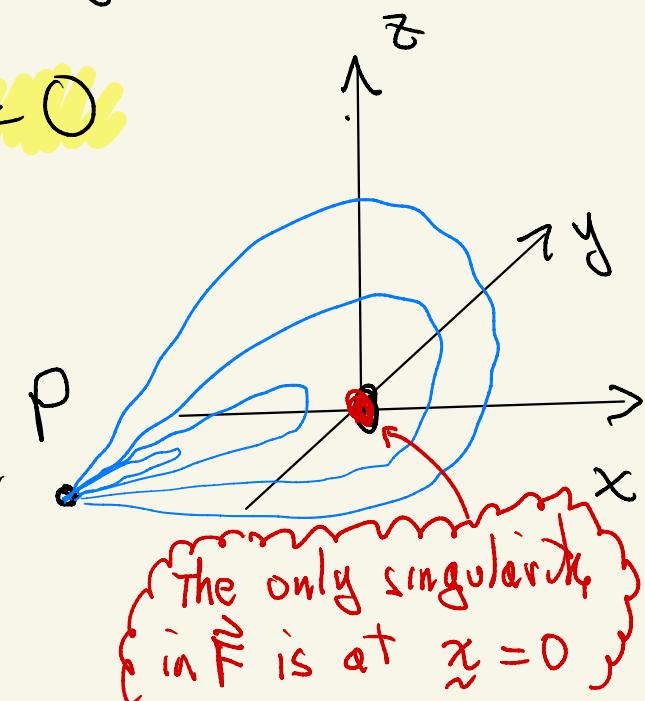
$$\nabla \frac{1}{r} = -\frac{\mathbf{r}}{r^3} = \mathbf{F}$$

Q: Is \mathbf{F} curl free on a simply connected region? Ans Yes

\mathbf{F} is defined every where

except $\mathbf{r} = (x, y, z) = 0$

"You can always pull a closed curve around origin in \mathbb{R}^3 "



Since $\mathbf{F} = \nabla \frac{1}{r}$ we know

(13)

$$\operatorname{Curl} \mathbf{F} = \operatorname{Curl} (\nabla f) = 0$$

because "Curl after ∇ is zero"

$$\mathbb{R} \xrightarrow{\nabla} \mathbb{R}^3 \xrightarrow{\operatorname{Curl}} \mathbb{R}^3 \xrightarrow{\operatorname{Div}} \mathbb{R}$$

We now check directly -

$$\operatorname{Curl} \mathbf{F} = \begin{Bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -\frac{x}{r^3} & -\frac{y}{r^3} & -\frac{z}{r^3} \end{Bmatrix}$$

$$= \mathbf{i} \left[\left(\frac{\partial}{\partial y} \left(\frac{z}{r^3} \right) + \frac{\partial}{\partial z} \left(\frac{y}{r^3} \right) \right) - \mathbf{j} \left[\left(\frac{\partial}{\partial x} \left(\frac{z}{r^3} \right) + \frac{\partial}{\partial z} \left(\frac{x}{r^3} \right) \right) \right. \right. \\ \left. \left. = 0 + \mathbf{k} \left[\frac{\partial}{\partial x} \left(-\frac{y}{r^3} \right) - \frac{\partial}{\partial y} \left(-\frac{x}{r^3} \right) \right] \right]$$

Check:
$$2 \left[\left(-\frac{\partial}{\partial y} \left(\frac{z}{r^3} \right) + \frac{\partial}{\partial z} \left(\frac{y}{r^3} \right) \right) \right] = 0$$

$$\frac{\partial}{\partial y} \frac{z}{r^3} = -3 \frac{z}{r^4} \frac{y}{r}$$

$$\frac{\partial r}{\partial x} = \frac{x}{r} \text{ etc}$$

$$\frac{\partial}{\partial z} \frac{y}{r^3} = -3 \frac{y}{r^4} \frac{z}{r}$$

$$-\frac{\partial}{\partial y} \left(\frac{z}{r^3} \right) + \frac{\partial}{\partial z} \left(\frac{y}{r^3} \right) = 3 \frac{zy}{r^5} - 3 \frac{yz}{r^5} = 0 \checkmark$$

Similarly for \hat{x} \hat{y} \hat{z} components.

Conclusion: Newton Force $\vec{F} = -\frac{\vec{r}}{r^3}$

Satisfies $\text{curl } \vec{F} = 0$ on a

Simply connected Domain \Rightarrow Conservative Thm

Q: Why is it true that if

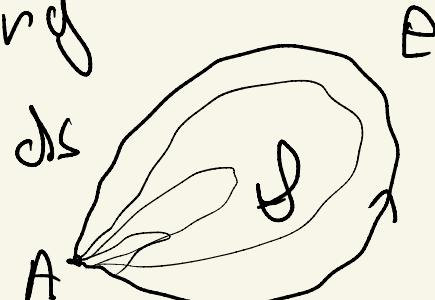
$\text{curl } \mathbf{F} = 0$ on a simply connected domain then \mathbf{F} is conservative?

Ans: Stokes Theorem I.e. assume so.

Then:

(1) given C closed, it can be contracted to a point to form a surface S with C as boundary

(2) Stokes Thm: $\iint_S \text{curl } \mathbf{F} \cdot \hat{n} dS = \int_C \mathbf{F} \cdot \hat{T} ds$



(3) Since $\int_C \mathbf{F} \cdot \hat{T} ds = 0$ for every closed curve C , we know line integral is independent of path

so $f(x) = \int_A^x \mathbf{F} \cdot \hat{T} ds$ is well defined

(4) $\nabla f = \mathbf{F}$ by previous Thm, so \mathbf{F} conservative